AI+SaaS具有怎样的特点?

AI+SaaS具有怎样的特点?

行业资讯2017年06月14日 1,357

  “人工智能”一词最初是在1956 年Dartmouth学会上提出的。英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。随着科技的发展,AI已不再是一个理论概念,科学家们已研发出一代又一代的人工智能。那么,当AI撞上SaaS将会有怎样的火花呢?推荐相关文章《SaaS行业经历着怎样的蜕变?

  这是一个前沿科技颠覆商业模式的时代,技术迭代速度之迅疾,威力之巨大,所有人都心知肚明。

  很显然,AI已经不再只是一个噱头十足的概念,但人工智能所带来的,除了希望的憧憬,还有令人不安的焦虑。

  焦虑者之中,有人担心AI会如科幻电影中的桥段那样统治人类,也有人则担心自己的饭碗被AI所打破。与芸芸众生相比,AI带给商业层面的焦虑更加汹涌,任何一家科技公司在讨论AI时,大家面前的选项从来不是To Be or Not To Be,而是How To Be?

  最近一年来,在企业级SaaS行业,已有数十家厂商明确提出了“AI+SaaS”。这是一个前沿科技颠覆商业模式的时代,技术迭代速度之迅疾,威力之巨大,所有人都心知肚明。

  一、“AI+SaaS”,效率工具的被替代恐慌

  如果仔细查阅过近两年来关于SaaS行业的各种研究报告,你会发现,无论是国外的Gartner,还是国内的易观、艾瑞,人工智能都被当成一个独立的单元出现在了SaaS行业的研报中。

  研究机构普遍认为:AI作为一种技术要素,已经开始了与企业级SaaS相互融合的进程,而这一趋势的主要推动力则源自用户对费控软件费控系统报销软件等“更高效的企业级应用”的强烈诉求。

  事实亦是如此,无论SaaS公司搬出多少概念,玩出多少新花样,企业级SaaS效率工具的本质始终不会改变,即提升企业用户销售及管理效率的使命始终不会改变。

  不知是否有人跟二爷产生过同样的疑问:为什么将计算器、提醒事项、语音备忘录等应用拖进一个文件夹,iPhone会把它们命名为“效率”?开始时迷惑,后来逐渐想通了,上述应用其实都是在帮助我们更高效的解决实际的问题。

  所谓“高效”,也就是在成本恒定的条件下,让我们能花更少的时间解决同样多的问题,或是在同样的单位时间内解决更多的问题。那么,从效率的角度来看,AI+SaaS会带来什么?

  在企业的日常经营中,由于需要雇佣劳动力而产生的人力成本往往是最大的一笔开支。随着中国市场人口红利的消失殆尽,越来越多的数据表明,人会越来越贵。

  千禧年之初,“电算化”是当时的新趋势,中国企业掀起了第一波信息化浪潮,即是让计算机去优化生产(管理)结构。再到近10年来,随着互联网技术的发展,企业的信息化逐渐从独立部署走向云端,SaaS模式带来第二波企业信息化浪潮,其最大意义是大幅降低了软件系统自身的成本,继续拉大了系统成本与人力成本之间的剪刀差。

  随着人工智能开始进入商用领域,如果说计算机和软件系统带给企业的是人力成本的“优化”,那么AI带来的则是对人力的“替代”。显而易见,当AI代替人力,企业在人力成本上的支出将呈指数级下降。

  与此同时,具备深度学习能力的AI在单位时间内处理同等当量问题的速度比人更快。伴随算法的不断成熟,AI的运算速度会越来越快,能够应付的问题会越来越复杂,这对企业用户来说,带来的是时间成本的降低。

  当人力成本和时间成本具备双降的可能性,出于对最优效率结构的追求,企业将会重新审视获取服务的提供商,他们中有传统的ISV,有SaaS公司,也有正在路上的AI公司。从这个角度来看,提供“替代”服务的AI公司未来的胜算会大一些。

  所以,SaaS公司提出“AI+SaaS”,迫切的想赶在AI公司到来之前抢占人工智能的坑位,否则他们当初抢了ISV饭碗的那一幕,可能就会在AI公司和自己之间上演。

  二、万万没想到,扼住“AI+SaaS”咽喉的竟是DT

  通常情况下,我们在提及新科技革命时会将云计算、大数据、人工智能三者放在一起讨论。云计算提供基础计算、存储和网络,提供多终端弹性可定制服务;大数据则提供分布式计算和存储等数据工程方面的支持;而人工智能提供概率图模型、深度学习等数据算法方面的支持。

  由此可见,云计算、大数据和人工智能三者事实上分属于两个不同时代:云计算和大数据是DT时代的代表,而人工智能则代表了AI时代。某种意义上来说,DT是AI的底层架构,要做人工智能,则必须要有云计算和大数据的支持。

  举一个例子,得益于人工智能深度学习能力和不断进化的算法,AI已经在衣食住行等诸多方面展现了不俗的能力。按理来说,AI应该同样能够指导企业的销售行为。对SaaS公司来说,如果能让AI介入售前环节,帮助企业用户更新销售模型,带来销量提升,让软件产品离“钱”越近,企业用户就越易于接受,乐于付费。

  但事实上,即便是再聪明的AI目前也在销售环节施展才能。究其原因,是由于AI深度学习的能力源自对数据样本的汲取,数据越丰富,AI在算法的加持下则越智能。在to C的应用场景下,AI已经有足够多的数据可供去学习,但to B的企业数据相对来说还很少。这便如同,给AI一本书和给AI一座图书馆的区别。

  回到AI+SaaS的问题上,如果AI和SaaS中间少了“数据”,它其实是个伪命题。那对SaaS公司来说,比起蒙起眼睛押宝AI的未来,更应该去提升DT的能力,即帮助用户获取数据和分析数据的能力。

  三、云客服、CRM,是谁蹲守在“AI+SaaS”的下个路口?

  毫无疑问,任何新技术的商业化应用都需要一个过程,AI也不例外。AI+SaaS提出之后,最先感觉到菊花一紧的显然是SaaS客服行业,毕竟像客服这类专业化程度不高的人员密集型领域必然会是AI最好的试验田。

  2016年底,业内对AI客服技术的讨论极为热烈,无论是各大巨头旗下客服产品,还是SaaS云客服行业的创业公司都将“人工智能”列为核心关键词。包括阿里、京东、环信、网易七鱼、Udesk、快商通等等,一大批SaaS客服提供商都推出了“人工智能客服解决方案”,标榜AI概念。

  目前来看,AI客服的确已经在问答相对标准的售后环节发挥了比较明显的作用,带来节省人力成本的价值自不必说。但正如前文所说的那样,AI客服在更为重要的售前环节还不能完全满足企业用户的需求,所欠缺的比如能够显著提升流量转化率的智能话术辅助、智能营销策略等功能。

  除了SaaS客服行业,另一个对AI技术颇为敏感的是CRM市场。美国咨询机构Gartner通过对Salesforce、SAP、Oracle等公司的数据分析,在《2016年CRM市场分析报告》中提出:分析、机器学习和AI是CRM未来发展方向。甚至有媒体人断言,AI技术将会在未来三年内彻底改变CRM。

  纵观国内外,CRM江湖一直都是国内SaaS行业的风向标。

  主要原因在于,相比其他SaaS领域,CRM起来的比较早,在商务智能时代(BI)积累了一定体量的数据样本,且标准化程度较高,对于数据的处理和分析也一直是其挖掘的重点。正因为如此,CRM市场具备了与AI结合的先决条件,国外CRM巨头Salesforce甚至赤裸裸的提出了“AI+CRM”的概念。

  即便如此,CRM厂商利用AI技术让企业数据“活”起来,从进而介入企业的决策和管理,这也并非易事。比如,AI化的CRM需将企业经营管理中的前台、中台、后台全流程打通,并连接小B用户与外部应用。一旦涉及到终端用户和连通外部,由此产生的数据量将非常庞大,这对CRM厂商来说是一个非常严峻的考验。

  事实上,以目前国内CRM厂商在AI领域的技术积淀来看,并没有谁能够完全实现。

  由此可见,如果SaaS厂商不是碰瓷一般将“AI+SaaS”作为借势营销的噱头,那么仅从BAT或者硅谷挖来几个算法工程师,推出一两个叫小A、小B的智能机器人还远不能搞定这“一锤子的买卖”,有关星辰和大海的征途还很漫长。

  写在最后:

  随着人工智能正式成为一门显学,嗅着“钱味儿”蜂拥而至的资本会快速将这个市场催熟。从长远来看,在企业服务领域,AI作为一项技术能力,势必会成为如水电煤一样的基础设施。

  如同“互联网+”和“+互联网”的讨论一样,“AI+SaaS”和“SaaS+AI”亦是两种不太一样的存在。如果跳出SaaS的范畴,从整个云计算行业的角度去审视AI技术,IaaS服务商和PaaS平台涉足人工智能领域的步伐要比SaaS厂商更为快速。因此,基于IaaS和PaaS的AI会大大加速“AI+SaaS”的发展进程。

  随着人工智能的发展,“AI+SaaS”已不再是一种设想。AI和SaaS虽然属于两个不同的领域,AI的技术将会大大加快“AI+SaaS”的发展速度,两者的结合将会产生1+1>2的效果。相信在不久的将来我们将会享受到“AI+SaaS”带来的便利。

 

推荐阅读:

移动报销让财务共享中心实施更具战略意义

会计未来的敌人是谁?

财务共享中心背景下财务人员的转型有哪些?

如何更好的实现商旅简化的目标?

移动报销未来发展在何处?

B2B交易平台+SaaS有着怎样的发展

财务共享服务中心的功能设立与运行

电话咨询

免费热线

400 829 7878

免费注册
预约演示